66 research outputs found

    An Inhibitory Antibody Blocks Interactions between Components of the Malarial Invasion Machinery

    Get PDF
    Host cell invasion by apicomplexan pathogens such as the malaria parasite Plasmodium spp. and Toxoplasma gondii involves discharge of proteins from secretory organelles called micronemes and rhoptries. In Toxoplasma a protein complex comprising the microneme apical membrane antigen 1 (AMA1), two rhoptry neck proteins, and a protein called Ts4705, localises to the moving junction, a region of close apposition between parasite and host cell during invasion. Antibodies against AMA1 prevent invasion and are protective in vivo, and so AMA1 is of widespread interest as a malaria vaccine candidate. Here we report that the AMA1 complex identified in Toxoplasma is conserved in Plasmodium falciparum. We demonstrate that the invasion-inhibitory monoclonal antibody (mAb) 4G2, which recognises P. falciparum AMA1 (PfAMA1), cannot bind when PfAMA1 is in a complex with its partner proteins. We further show that a single completely conserved PfAMA1 residue, Tyr251, lying within a conserved hydrophobic groove adjacent to the mAb 4G2 epitope, is required for complex formation. We propose that mAb 4G2 inhibits invasion by preventing PfAMA1 from interacting with other components of the invasion complex. Our findings should aid the rational design of subunit malaria vaccines based on PfAMA1

    Measurement of the plasma levels of antibodies against the polymorphic vaccine candidate apical membrane antigen 1 in a malaria-exposed population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Establishing antibody correlates of protection against malaria in human field studies and clinical trials requires, amongst others, an accurate estimation of antibody levels. For polymorphic antigens such as apical membrane antigen 1 (AMA1), this may be confounded by the occurrence of a large number of allelic variants in nature.</p> <p>Methods</p> <p>To test this hypothesis, plasma antibody levels in an age-stratified cohort of naturally exposed children from a malaria-endemic area in Southern Ghana were determined by indirect ELISA. Titres against four single <it>Pf</it>AMA1 alleles were compared with those against three different allele mixtures presumed to have a wider repertoire of epitope specificities. Associations of antibody levels with the incidence of clinical malaria as well as with previous exposure to parasites were also examined.</p> <p>Results</p> <p>Antibody titres against <it>Pf</it>AMA1 alleles generally increased with age/exposure while antibody specificity for <it>Pf</it>AMA1 variants decreased, implying that younger children (≀ 5 years) elicit a more strain-specific antibody response compared to older children. Antibody titre measurements against the FVO and 3D7 AMA1 alleles gave the best titre estimates as these varied least in pair-wise comparisons with titres against all <it>Pf</it>AMA1 allele mixtures. There was no association between antibody levels against any capture antigen and either clinical malaria incidence or parasite density.</p> <p>Conclusions</p> <p>The current data shows that levels of naturally acquired antigen-specific antibodies, especially in infants and young children, are dependent on the antigenic allele used for measurement. This may be relevant to the interpretation of antibody titre data from measurements against single <it>Pf</it>AMA1 alleles, especially in studies involving infants and young children who have experienced fewer infections.</p

    Vaccination with Plasmodium knowlesi AMA1 Formulated in the Novel Adjuvant Co-Vaccine HTβ„’ Protects against Blood-Stage Challenge in Rhesus Macaques

    Get PDF
    Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a leading blood stage vaccine candidate. Plasmodium knowlesi AMA1 (PkAMA1) was produced and purified using similar methodology as for clinical grade PfAMA1 yielding a pure, conformational intact protein. Combined with the adjuvant CoVaccine HTβ„’, PkAMA1 was found to be highly immunogenic in rabbits and the efficacy of the PkAMA1 was subsequently tested in a rhesus macaque blood-stage challenge model. Six rhesus monkeys were vaccinated with PkAMA1 and a control group of 6 were vaccinated with PfAMA1. A total of 50 Β΅g AMA1 was administered intramuscularly three times at 4 week intervals. One of six rhesus monkeys vaccinated with PkAMA1 was able to control parasitaemia, upon blood stage challenge with P. knowlesi H-strain. Four out of the remaining five showed a delay in parasite onset that correlated with functional antibody titres. In the PfAMA1 vaccinated control group, five out of six animals had to be treated with antimalarials 8 days after challenge; one animal did not become patent during the challenge period. Following a rest period, animals were boosted and challenged again. Four of the six rhesus monkeys vaccinated with PkAMA1 were able to control the parasitaemia, one had a delayed onset of parasitaemia and one animal was not protected, while all control animals required treatment. To confirm that the control of parasitaemia was AMA1-related, animals were allowed to recover, boosted and re-challenged with P. knowlesi Nuri strain. All control animals had to be treated with antimalarials by day 8, while five out of six PkAMA1 vaccinated animals were able to control parasitaemia. This study shows that: i) Yeast-expressed PkAMA1 can protect against blood stage challenge; ii) Functional antibody levels as measured by GIA correlated inversely with the day of onset and iii) GIA IC50 values correlated with estimated in vivo growth rates

    Safety and Immunogenicity of an AMA-1 Malaria Vaccine in Malian Adults: Results of a Phase 1 Randomized Controlled Trial

    Get PDF
    The objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria.A phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1) based on apical membrane antigen-1 (AMA-1) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert). Sixty healthy, malaria-experienced adults aged 18-55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 microg/AS02A 0.25 mL or FMP2.1 50 microg/AS02A 0.5 mL) or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively.The FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site

    Phase 1 Study of a Combination AMA1 Blood Stage Malaria Vaccine in Malian Children

    Get PDF
    Apical Membrane Antigen-1 (AMA1) is one of the leading blood stage malaria vaccine candidates. AMA1-C1/Alhydrogel consists of an equal mixture of recombinant AMA1 from FVO and 3D7 clones of P. falciparum, adsorbed onto Alhydrogel. A Phase 1 study in semi-immune adults in Mali showed that the vaccine was safe and immunogenic, with higher antibody responses in those who received the 80 microg dose. The aim of this study was to assess the safety and immunogenicity of this vaccine in young children in a malaria endemic area.This was a Phase 1 dose escalating study in 36 healthy children aged 2-3 years started in March 2006 in DonΓ©guΓ©bougou, Mali. Eighteen children in the first cohort were randomized 2 ratio 1 to receive either 20 microg AMA1-C1/Alhydrogel or Haemophilus influenzae type b Hiberix vaccine. Two weeks later 18 children in the second cohort were randomized 2 ratio 1 to receive either 80 microg AMA1-C1/Alhydrogel or Haemophilus influenzae type b Hiberix vaccine. Vaccinations were administered on Days 0 and 28 and participants were examined on Days 1, 2, 3, 7, and 14 after vaccination and then about every two months. Results to Day 154 are reported in this manuscript.Of 36 volunteers enrolled, 33 received both vaccinations. There were 9 adverse events related to the vaccination in subjects who received AMA1-C1 vaccine and 7 in those who received Hiberix. All were mild to moderate. No vaccine-related serious or grade 3 adverse events were observed. There was no increase in adverse events with increasing dose of vaccine or number of immunizations. In subjects who received the test vaccine, antibodies to AMA1 increased on Day 14 and peaked at Day 42, with changes from baseline significantly different from subjects who received control vaccine.AMA-C1 vaccine is well tolerated and immunogenic in children in this endemic area although the antibody response was short lived.Clinicaltrials.gov NCT00341250

    Protein Kinase A Dependent Phosphorylation of Apical Membrane Antigen 1 Plays an Important Role in Erythrocyte Invasion by the Malaria Parasite

    Get PDF
    Apicomplexan parasites are obligate intracellular parasites that infect a variety of hosts, causing significant diseases in livestock and humans. The invasive forms of the parasites invade their host cells by gliding motility, an active process driven by parasite adhesion proteins and molecular motors. A crucial point during host cell invasion is the formation of a ring-shaped area of intimate contact between the parasite and the host known as a tight junction. As the invasive zoite propels itself into the host-cell, the junction moves down the length of the parasite. This process must be tightly regulated and signalling is likely to play a role in this event. One crucial protein for tight-junction formation is the apical membrane antigen 1 (AMA1). Here we have investigated the phosphorylation status of this key player in the invasion process in the human malaria parasite Plasmodium falciparum. We show that the cytoplasmic tail of P. falciparum AMA1 is phosphorylated at serine 610. We provide evidence that the enzyme responsible for serine 610 phosphorylation is the cAMP regulated protein kinase A (PfPKA). Importantly, mutation of AMA1 serine 610 to alanine abrogates phosphorylation of AMA1 in vivo and dramatically impedes invasion. In addition to shedding unexpected new light on AMA1 function, this work represents the first time PKA has been implicated in merozoite invasion

    Impact of a Plasmodium falciparum AMA1 Vaccine on Antibody Responses in Adult Malians

    Get PDF
    Apical Membrane Antigen 1 (AMA1) of Plasmodium falciparum merozoites is a leading blood-stage malaria vaccine candidate. Protection of Aotus monkeys after vaccination with AMA1 correlates with antibody responses.A randomized, controlled, double-blind phase 1 clinical trial was conducted in 54 healthy Malian adults living in an area of intense seasonal malaria transmission to assess the safety and immunogenicity of the AMA1-C1 malaria vaccine. AMA1-C1 contains an equal mixture of yeast-expressed recombinant proteins based on sequences from the FVO and 3D7 clones of P. falciparum, adsorbed on Alhydrogel. The control vaccine was the hepatitis B vaccine (Recombivax). Participants were enrolled into 1 of 3 dose cohorts (n = 18 per cohort) and randomized 2:1 to receive either AMA1-C1 or Recombivax. Participants in the first, second, and third cohorts randomized to receive AMA1-C1 were vaccinated with 5, 20 and 80 microg of AMA1-C1, respectively. Vaccinations were administered on days 0, 28, and 360, and participants were followed until 6 months after the final vaccination. AMA1-C1 was well tolerated; no vaccine-related severe or serious adverse events were observed. AMA1 antibody responses to the 80 microg dose increased rapidly from baseline levels by days 14 and 28 after the first vaccination and continued to increase after the second vaccination. After a peak 14 days following the second vaccination, antibody levels decreased to baseline levels one year later at the time of the third vaccination that induced little or no increase in antibody levels.Although the AMA1-C1 vaccine candidate was well-tolerated and induced antibody responses to both vaccine and non-vaccine alleles, the antibody response after a third dose given at one year was lower than the response to the initial vaccinations. Additionally, post-vaccination increases in anti-AMA1 antibody levels were not associated with significant changes in in vitro growth inhibition of P. falciparum.ClinicalTrials.gov NCT00343005

    Safety and Immunogenicity of a Recombinant Plasmodium falciparum AMA1 Malaria Vaccine Adjuvanted with Alhydrogelβ„’, Montanide ISA 720 or AS02

    Get PDF
    Contains fulltext : 71100.pdf (publisher's version ) (Open Access)BACKGROUND: Plasmodium falciparum Apical Membrane Antigen 1 (PfAMA1) is a candidate vaccine antigen expressed by merozoites and sporozoites. It plays a key role in red blood cell and hepatocyte invasion that can be blocked by antibodies. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the safety and immunogenicity of recombinant PfAMA1 in a dose-escalating, phase Ia trial. PfAMA1 FVO strain, produced in Pichia pastoris, was reconstituted at 10 microg and 50 microg doses with three different adjuvants, Alhydrogel, Montanide ISA720 and AS02 Adjuvant System. Six randomised groups of healthy male volunteers, 8-10 volunteers each, were scheduled to receive three immunisations at 4-week intervals. Safety and immunogenicity data were collected over one year. Transient pain was the predominant injection site reaction (80-100%). Induration occurred in the Montanide 50 microg group, resulting in a sterile abscess in two volunteers. Systemic adverse events occurred mainly in the AS02 groups lasting for 1-2 days. Erythema was observed in 22% of Montanide and 59% of AS02 group volunteers. After the second dose, six volunteers in the AS02 group and one in the Montanide group who reported grade 3 erythema (>50 mm) were withdrawn as they met the stopping criteria. All adverse events resolved. There were no vaccine-related serious adverse events. Humoral responses were highest in the AS02 groups. Antibodies showed activity in an in vitro growth inhibition assay up to 80%. Upon stimulation with the vaccine, peripheral mononuclear cells from all groups proliferated and secreted IFNgamma and IL-5 cytokines. CONCLUSIONS/SIGNIFICANCE: All formulations showed distinct reactogenicity profiles. All formulations with PfAMA1 were immunogenic and induced functional antibodies. TRIAL REGISTRATION: (Clinicaltrials.gov) NCT00730782

    Structural and Functional Insights into the Malaria Parasite Moving Junction Complex

    Get PDF
    Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ) between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics

    Plasmodium berghei Circumvents Immune Responses Induced by Merozoite Surface Protein 1- and Apical Membrane Antigen 1-Based Vaccines

    Get PDF
    BACKGROUND: Two current leading malaria blood-stage vaccine candidate antigens for Plasmodium falciparum, the C-terminal region of merozoite surface protein 1 (MSP1(19)) and apical membrane antigen 1 (AMA1), have been prioritized because of outstanding protective efficacies achieved in a rodent malaria Plasmodium yoelii model. However, P. falciparum vaccines based on these antigens have had disappointing outcomes in clinical trials. Discrepancies in the vaccine efficacies observed between the P. yoelii model and human clinical trials still remain problematic. METHODOLOGY AND RESULTS: In this study, we assessed the protective efficacies of a series of MSP1(19)- and AMA1-based vaccines using the P. berghei rodent malarial parasite and its transgenic models. Immunization of mice with a baculoviral-based vaccine (BBV) expressing P. falciparum MSP1(19) induced high titers of PfMSP1(19)-specific antibodies that strongly reacted with P. falciparum blood-stage parasites. However, no protection was achieved following lethal challenge with transgenic P. berghei expressing PfMSP1(19) in place of native PbMSP1(19). Similarly, neither P. berghei MSP1(19)- nor AMA1-BBV was effective against P. berghei. In contrast, immunization with P. yoelii MSP1(19)- and AMA1-BBVs provided 100% and 40% protection, respectively, against P. yoelii lethal challenge. Mice that naturally acquired sterile immunity against P. berghei became cross-resistant to P. yoelii, but not vice versa. CONCLUSION: This is the first study to address blood-stage vaccine efficacies using both P. berghei and P. yoelii models at the same time. P. berghei completely circumvents immune responses induced by MSP1(19)- and AMA1-based vaccines, suggesting that P. berghei possesses additional molecules and/or mechanisms that circumvent the host's immune responses to MSP1(19) and AMA1, which are lacking in P. yoelii. Although it is not known whether P. falciparum shares these escape mechanisms with P. berghei, P. berghei and its transgenic models may have potential as useful tools for identifying and evaluating new blood-stage vaccine candidate antigens for P. falciparum
    • …
    corecore